1 'Tasmanian Wolf (Thylacinus cynocephalus), from Tasnania, purchased on April 18th.

2 Bearded Vultures (Gypaëtus barbatus), from Eirope, purchased on April 9th.

4 Mortier's Water-Hens (Tribonyx mortieri), from 'Tasmania, purchased on April 18th.

Mr. Ernest Gibson, F.Z.S., exhibiter a skin of Felis geoffroyi and made some remarks on the distribution of the animal.

The following papers were read:-

1. Observations on the Anatomy and General Biology of some Members of the Larger ('etacea. By D. Cx. Lililie, B.A., Hutchinson Research Student of St. Juhn's College, C'ambridge *.
[Received March 16, 1910.]
(Plate LXXIV.t and Text-figures 69-78)

Contents.

I. Introduction.
II. The Species captured at Innishkea.
III. The Occurrence of Hairs in Whales.

I I'. The Auditory Organ of Balcenoptera.
V. The Asymmetry of the Olontocete skull.

Vl. Notes on the Species :-
(1) Balcпoptera musculns Limmus.
(2) Balcenoptera sibbaldii Gray.
(3) Physeter macrocephalus Lineans.

V'll. Miscellaneons Observations:-
(1) Lurality of Captures.
(2) Diving Powers.
(3) Copulation, Period of Gestation, and Rate of Breeding.

I. Introduction.

Within the past seven years six whaling stations have been established in various outlying parts of the British Isles. Four stations have been opened on the mainland of Shetland, one in North Harris in the Hebrides \ddagger, and one on the island of South Imnishkea in the west of Ireland. Mr. R. C. Haldane §, of

[^0]Lochemb, Shetlam, asailing himself of the opportmities thas ottered, has collectent and pulbisherl mach information relating to the laren Cotacea captmed in senttish waters stace the opening of these whaling stations.

Hitherto, our knowledge of whales has been ehiofly derived from isolated specimens stamaled from time to time in valions localities aromil the coasts of civiliserl comntries. Some of these, though often in an afranced state of decay, have heen examined hy zoologists, and a few olsprvations have lieen added to the large thongh scattered Cetarean literature. The fact that the whaling industry has been confined to the willest regions of the earth and (anied on moter the severest comblions of physical privation has prevented other than chance observations of this nature being made.

The establishment of whaling stations near our shores shonld give a new impetus to the study of Cetology aml induce comperont ohservers to visit the stations during the whaling seasons. It may be hoperl that new light will be thrown upon the many obscure problems in the biology of whales before these much humted animals become too scarce.

During the spring of 1908 a whaling station was opened in the west of laclaml, by the Arramore Whaling Company, on the island of South lmnishkea off the coast of Co. Mayo ; amd al certain gentleman, who wishes to remain anonymons, prompted by considerations such as the ahove, came forward with a sum of money for the encomagement of the study of the Irish Cetaces. 'This funl, which was added to by others, was placerl in the hamls of Dr. S. F. Hamer, F.R.S., Keeper of Koology in the British Musem (Natural History), who was asked to find someone to risit the Trish station for as long a period as possible during the summer of 1909 for the pmpose of stulying the anatomy, the specifie chanaters, the general hiology. and other questions of wrontific interest relating to the larger C'etacea. I harl the good fortme to be chasen for the work, and acoordingly went to Tmishke on the bith of Jnly 1909 and remained there until the Zlith of Angust, a perioul of serell wecks.

This visit took phace ahout the midale of the whaling semson, which locgins ently in !laty and contimes up to the emt of
 mittent :mblemended langely on the weather. Dheng the linst,
 for duly and only onc whale was emght in four werks, while in the last formight 1 saw ne:nly thity whates hought to shome.

The huge size of the ammals makes any exambation of them woy dillionlt, wen at al whling station with all the nemessary :Hplances lom their dissection at ham. The length of the sumemens aren at lmishkea wared hetwern the limits of 50 and Sol feet in at staght line. Ang whatember fo feet is, aceorling to the whalern, wot woth showing. The whakes have a definite mothod of (onting up : whale whish no rombt is hest shited to their purpers. thengh lienn the print of viow of the amatomist the
process leares much to be desired. The latter has to make the best of the operations howerer, and it is so essential in the whaling tramle to clispose of the whales as rapidly as possible, while the oil is fresh, that the whalers can hasdly be expercted to stmily the needs of the anatomist. A whole animal 70 feet in length will often disappear completely in the couse of a moming.

When a momber of whales are bronght in at the same time, as is of ten the case, the zoologist is not greatly benefited, for they are all anchored to buoys at some little distance fiom the shore, and bronght to the "flensing slip" one ly one to be stripped of their whalehone amd blubber. The carcases are then taken back to the buoy to wait until they can be further dealt with. This method of procedure is rendered necessary on account of there heing no room for more than three or four whales on the "Hensing slip" at the same time.

The whales are artificially inflated with air directly they are killed, and they are then easily towed home by the whaling steamer. This inflation is often a source of great inconvenience to the anatomist, since portions of the riscera are torn away and shot out of the body-cavity when the body-wall is pierced by the Hensing knife.

Enough has been said to show that to the scientific man a whaling station does not pretend to olfer the advantages of momited time and comfort which are to be fonnd in a laboratory. But at a station all the largest whales, with the exception of Bulcena mysticetus and Rhachianectes glaucus, can ustally be seen within the space of three months. Very frequently several individuals of different species can be examined and compared as regards their external and internal characters. The material is often sufficiently fresh for histological study, which, on accoment of the gigantic size of the animals, should prove of considerable interest. Moreover, exceptional opportunities are offered to the maturalist of going out to sea in the whaling steamers. Many interesting observations mpon the habits of the Cetacea could possibly be marle by this means alone.

With regard to the smaller Cetaceans, since they are seldom killed by man at present, material is difficult to obtain; but the study of these amimals is not at the moment so pressing as that of the rapilly decreasing larger forms.

Before passing to consiter the observations resulting from my stay of seven weeks at Innishken I wish to express my thanks to the anonymons donors who made the risit possible, anil to many friembs who have helped me to carry ont the work.

My special thanks are due to Dr. S. F. Harmer, F.R.S., who has kindly read the proof-sheets, for entrusting me with the research and for his raluable help and adrice. I would also express my hearty thanks to Mr. R. M. Barrington, F.L.S., for his kindness in many ways and for giving me the benefit of his local knowlerge. T am under obligations to the Rev. W. S. Creen, C.B., Chief Inspector of Fisheries for Ireland,
amd to Mr. E. W. I. Halt for much kimhess shomo to me at hmishke: I emmot express my thanks too wamly for the comalal help amd hospitahty acoorded to me by Captain ArdtPettemen, Mre K. Christensen, and others at the Whaling Station. My sincere thamks are due to Mr. A. E. Shiphey, F.R.s., for many kindnesses. 'So Dr: W. 'T'. (alman 1 am mobed for the determination of the Crustacea. Finally: to Dr: II. (andow, F.R.S., I am rery depply gratefinl for his salnable help with regird to several imatomical peints.

The catch of whales at lmishkia for the opening season of 1908 numbered 77 , and was is follows *:
5) Belleme bivectypensis (inaly.
-1 Bata moptored muscrelus í inusens.
1!) Belvenoptera sithaldii (inay.
Bl Balamoptera burealis Lassion.
I Aergenterer longimena Rudophi.
The total mumber of whales eanght during the season of 1009 was 102 . These consisted of tive species. The mombers and areage length of the individuals are given in the following tithle:

-pecies.	Total number killed.	Nimber of bulls.	Arompe length of Balls.	Number of Cows.	Average lemerth of Cows.
Barienu biscoyeinsis limy	i)	+	ft. ins. 1.3 ii	1	ft. its. I. 31
Ratren.ptera musmulus Linmirus.	56	27	jis 3	29	6:1 11
Batenopera sibhaldii (irny	27	13	15 is	11	(ti) n
Balcenptera bormalis Lessinn	!	1	130	i	1211
Ihasetre mareonephelus linnaras	5	5	5.5		-

'Thus the list of species taken off lmishke is an lollows:-
Ralema hiseayrnsis fimay,

Belo moptered sibuchlii (ilas,
Buhemopterv horeulis Lesson,
Mestapterow longimame Rimlolphi.

[^1]and inchudes all the largent known speries of whales with the exception of Balem mysticetus Limmens sund librechianectes glaneus Cope. Several smaller Cetacenns are seen off the west const of Helaml, but they are not killed by the whalens. These inchule Belemopterg rostrata Gray, and some members of the subfamily Ziphinae and the family Delphinider.
'The specimens of Balrma biscayensis (iray, killed last summer', were taken doming the first fortnight of dune. This species is said by the whalers to leave our shores after the emil of Jume. biclemoptera musculus Limmarus was equally plentiful from the hegiming of May till the end of the season. Bahemoptera sibbakdia (imy was taken from the eml of dune till September. The erptures of Bahemopera borealis Lesson, were restricterl to the last half of May and the first half of dome, the last specimen being eanght ten days before the first 13 . sibluldii (imay was taken. 'This whale is said to leave our shomes "pon the armat
 Limmens) were (aptomed between the midhle of Jume amd thr and of July. If detaiked records of the eaptures of whales continue to he kept for the Lrish stations * to compare with those puhlisherl by Mr. Haldane for the Scotch stations, we may hopr, by this means, to throw some light upon the migations of these ereatures.

During my stay at lmishkea the following whales were captured: 21 specimens of Balomoptera musculas Limmens. 15) of which were examined ; 20 individhals of 7 . silbaldii (iray, 15 of which were examinerl; and two male Sperm Whales (I'hyseter marroceplatus Limmens), buth of which were examined. 'Thw ronlts obtained fom the examination of these whates will now he describerl.

[II. The: Occirreace of Hairs in Whales.

'The distribution and significane of the seanty hairs of the Cetacea do not appear to have been hitherto studied in the detail they deserve. They have been vagnely refercel to as ocemring on the jaws of some arlult forms t. Sometimes they have hern found on the fretus only.

Jn two alult Spem Whates (I'hyseter macrocephalues Limmans) seen at Immishkea, no trace of hairs could be found on any part of the animals oven after careful searching.

In the cass, however, of the Rorguals Balemopera musculns Linnapus, and lb. sibbaldii (dray, some 15 indivirluals of each species were examinerl, and it was fouml that a definite distribution of haiss could he marle out in each rasc. Fom rows of straight, white, bristle-like laiss from half an inch to an inch in length oceur on the donsal surface of the beak or facial region of

[^2]1.he hemb (ser foxt-fig. (it!). 'These consist of two immer rows on rither side of the modian riblge which bants the how-holes or sextmal mares, amd fwo outor mos following the edges of the batis from paints just bhime the blow-holes to its atorion

 they always key to the abowe mentionel limes of distribution Whether there are more of has that right hats foming atow.

Gu each sille of the lower jaw (text-fis, T0) there was a row of some
 mildle leme of the outme extige of meh ramme to atoint just in form of the eve. At the extreme amterion ems of the mamble

 wher from the "pper to the matere suface of exth ramms. The hatis in these two moss ate placed eloser fogedher than in the

 in lade m,
 rapiose to be dome in order to determine whether they possess at therifr function ar not.

[^3]On looking throngh the Cetarem literatme: theme ampars to be mo record of the orempence of haiss in andut, ()dontometes. It, would seem that we presence of hatis in the alult, is restreded to the Whatetone Whales; and their retention and dist dibulon mos. the beak and mandible in these forms may loe due to therir possessing a tantile function and thus serve to indieate to the amimal the presence of its fore. The small size of the Crastarea which gemerally fomm the ford of the Mystaceoreti make them
 rey rextued, the ocrurener of tactibe haiss over the omal pegion may be an mbantage, as the small food-inimals might bush agianst them and thas inform the whate when to open its month.
'l'ext-fig. 70.

Lateral view of the head of Bellonoptera silhetdia giaty, to show the hairs.
'The top of the snout of a whale is, of comese, only the prolongere "pper lip, where one would natumally luok lon vinisiad. In one of the figmos given hy Sas in the japmatowe mentioncel, what appars to be at newe is seen thomersing the blablere at the hase of the hair; which would peint to a tactile fumetion. On this thensy, the look of the Ofontocetes being of at latger si\%e the
 the hairy awering has entirely smished in the alult forms ol' these whales.
(On the other hame it is alss comerivable that, the vibrisar,
 disarperar ; and the face that, they have rearhet an further stage of deweneration in the (htontoretes than they have in the Whatetome Whales may he pmrely aceridestal.

 muscrulus and b. silberldii was examinerl wibh mome dilliculty. The pats of the rate agreal faily well in both these sperdes with
thuse parts of the anlitory organ，in Bulmopteru rostrutu，which were described by Drs．Carte amd Macalister＊in their excellent paper on the anatomy of a member of that species pmblished in 1867．Wr．Dwight thas also described the bones of the amlitory organ of B ．musculus at some length in a piper published in 1872. It will thus be only necessary briefly to recapitulate here the parts of the organ which are already known and to ald some ohservations which appear to be new．

The opening of the external ambitory meatus on the surface of the head is a relatively small slit situaterl at a short distance hehind the eye in a horizontal line with the commissure of the lips．There is no trace of a pima．The anditory canal is con－ timed lackwarls from this apertme mentil it reaches as far as the zygomatic process of the sphamosal hone where it tums inwards amb，increasing somewhat in diameter，proceeds along a groove in the squ：mosal hone（text－fig．71，活．${ }^{1}$ ）which wimls round the posterior border of that bone to reach the tympanic membanme． The diameter of this tuhe towards its immer amb wider extremity was abont one and a half inches in the two species maler con－ silemation．

The trmpanic memhrame（Pl．LNXIV．fig．1）seems to have escaper the notice of previons ohservers．It is highly moditied amd is a sac－like structure not mblike the finger of a glove．The sace （Pl．LAX゙IV．fig．l，t^{\prime} ）is abont there inches long and there－quarters of ：m inch in diameter and tipers to a roumled point at the outer on＂distal end．＇The walls of the sac are about one－tenth of an inch in thickness，and consist chiefly of white fibous tissue and yellow elastic tissue．No neve－cells or fibres amm no muscle－fibres have been fomd up to the present．From the mper surface of the sac in the merhan line a ligament about an ineh long and 5 mm ．in dimmeter projects formams townels the tympanic cavity．The ligament is comtimed along the sace in the opposite direction as at rifge．The total length of the tympanic sile and ligament is abont four inches．The month of the sac opens into the tympanic： eavity，while the onter portion projects into the external anditory meatus．The inner extremity of the latter joins the rim of the satc（Pl．LXXIV．fig．1，隹）．The ligamentons process passes mader． the junction of the mallens and incus．and hecomes attached at its proximal end to the very much reduced mambrimm of the mallens． The mallens is fused to the tympanc hone，as has been already pointerl ont by Drs．Cante and Macalister．Thus in Bulunopteret the tympanie membane has beeme a sac－like organ，which poojects ontwarls and is attached by a ligament to a rigid process of the tympanic hone－this process heing the mallens．

In the external amlitory matns of all the imbividnals examined at Immisheat there was a solid phgg ol wax－like sulstanee of farly definite size amd shape which does not serm to have been hitherto described．This plug（Pl．WNXVV．fig．O）was watally about

[^4]5 inches long and $1 \frac{1}{2}$ inches broad at the wider end. It consisted of a deposit of car-wax, which formed a coat to the onter surface of the tympanic membrane in that region where the latter projecterl into the external anditory meatus. The deposit formed a solid mass, which conlr easily be detached from the tympanic membume. The imner portion of the plug had the form of an oval cul (Pl. LXXIV. fig. 2, a), measuring about $1 \frac{1}{2}$ inches across the broadest part and approximately 1 inch deep. The outer portion, however, formed a solid thin flattened rod about 4 inches long and 1 inch broad (Pl. LXXTV. fig. 2, b). The aurlitory canal appeared to be full of water, in which the tympanic membrane was immersed, with the attached plug of wax lying in a horizontal position. The total length of the membrane amplug thus projecting into the anditory canal was about 6 inches (Pl. LXXIV. fig. 3).

The Cetacea have a remarkable depression on the base of the canium on each side of the median line (text-fig. 71).

Text-fig. 71.

Ventral view of left posterior portion of the skull of Batanoptera musculus Limmsus The tympanic bone has been remored.
 $P t^{1}=$ Ptrysoid plate of alisphemoid; Pt. $2=$ Portion of pterygoid, formine roof of pterygoid fossa ; $S_{q}=Z$ ygomatic process of squamosal; $\mathbb{S}_{q} .{ }^{1}=$ Kygomatic process of squamosal, forming roof of groove in which lies the imer portion of the extemal anditory meatus with the phag of ear-was: \quad, anterior pediele for attachment of tympanic bone, situated on pro-ntic portion of periotic: l, fenestra ovalis, situated on the labyrinthic segment of periotic; c, posterior pedicle of tympanic hone, situated on npisthotic portion of periotic ; Op., opisthotic portion of periotic ; Bo., basioccipital; E.ro., exoccipital.

In Balcenoptera these depressions are bounded posteriorly by the projecting edge of the exoccipital, externally by the base of the zygomatic process of the squamosal, on the imer sible behimi by
the prominemt edere of the hasioceipital．The anterior partion of the immer side of this depression and the fiont of the recess are
 tongether the later also form the roof of the anterior half of the depression．＇Thus the anterior portion of the cavity is bomderl on three sides hy the perygoid amd externally by the squamosil， and is known as the ptervernd fossa．

In this repess the mited tympanic and periotic＊bones lie． The latter consists of three parts ：an amterion or pootice，a central or laborinthic，and a posterion or opisthotic．The anterion or pro－otic hone resembles a three－sidenl pramid with its apex point ing forwards amd projecting into a carity in the squamosal bone above the roof of the pterygond fossi．

On the inferior smfane of the prootic．at its posteriorend，there is a longiturlinally llattenerl pealicle which mites with the anterion－ extremity of the tympanie bons．Just hehind this ：anterior pedicle of the trmpanie that is，between the prootic portion and the central or lahyrinthic－there is a groove roming in a tramsrerar direction．This fumow forms the roof of the atulitory moaths． The central or koblathic portion is the smallest of the thore divisions of the periotic，and it contains the vestibule，the cochle：， amb the diminntive semicincular camals．The inferion surface of this bone is dome－shaped and foms the roof of the tympanice cavity． The fencstra walis is sitnated in the depression which marks the onter border of this bone on the momer sitle．The fenestran rotumda is phaced some little distance behind the fenestra ovalis，and is separated from the latter by a ridge which forms the postenion bomblary of the tympmic casity above．The fenestra rotmola is thms on the posterion surface of the lathrinthic segment，amb thes ontside the tymmaie carity．The superior surface of the bahyrinthic bone is imernlar in shape and is fumed towards the canial ravity．Two formana open on this surface－the aque－ ductus Pallopii anterionly and the intermal anditory meatus posterionly．The aquerluctus perforates the bone and opens at the base of the labyrinthic segment，and is comtinmons with a moove in the pristhotic division．At the posterior end of the babyinthie the opisthotie segmont extemds outwards ；it is rom－ stricten at its origin，hat hombens and expands towards its extromity betwen the splamosal and exoceppital hones almost at right angles to the prontic portion．In fact，the labyrinthic may he sald to tie at the angle formed by the prootic and opisthotic． The tympanic segment is mited to the emds of these two bomes hy perlieles．which are flattened in the direction of theme lengeth． Thus the posterior pedicle is situater on the inferion surface of the opisthotic，nowe its jumetion with the labyinthe，and is at， right angles to the anterion perdicla．

Thr tympanc bonet（Pl，IAN゙IV．fig．3，，I），which is altacherl to the prodiotastescribel abowe is manally abont five inehes lomer

[^5]and shaper like a cowrie shell. It occupies the pusterior half of the depression, into which it fits fairly closely (text-fig. 7l, a, c), its outer inferior surface being level with the projecting edge of the basioccipital, the pterygoid fossa lying immerliately in front. The tympanic bone may be said to have an inner and an onter smface, which meet below. The imere surface is flat, its lower edge lying near, hat not tonehing, that of the projecting process of the basioccipital; its upper elge is smooth and rolled into the cavity of the bone. The outer side of the tympanic is romurter, with the convexity pointing ontwards. The upper erge of this onter side forms an irregular extended lip, which gives rise to the anterior and posterior pedicles. On this lip, immerhately lechind the anterior perlicle and at right angles to it, there is a ridge projecting upwards and nearly tonching the periotic. The inner erge of this ridge is continuons with the processus longus of the malleus, the mallens thus being fused to the tympanic bone. This process, which runs parallel to the posterior pedicle, together with the latter, form the sides of the anditory meatus.

The mallens has been described by Drs. Carte and Macalister* * and is stated by these authors to be fused to the tympanic bone by the handle or manubrium ; whereas Dr. Dwight + regarls that portion of the malleus which has co-ossified with the bulla as the pocessus longus or gracilis. The latter would seem to be the correct interpretation judging fiom the morle of attachment of the tympanic memhane. This structure was apparently lost or had decayed in the specimens dissected by the above-mentioned writers, so they could only guess at the relationship of the parts. The mambrium is reducer to a short process, slightly hooked at its distal end (Pl. LXXIY. fig. 1, b), on the rentral surface of which is attached the ligament of the tympanic membrane. This is the only attachment of the membrane to the mallens. The rim of the tympanic membrane sac is joined to the inner extremity of the external anditory canal. The processus longus or gracilis (Pl. LXXIV. fig. 1, c) is well developert, and is fused to the inner' edge of the lip of the tympanic bulla. The incus and stapes have been described by previons writers \ddagger, and are morphologically similar to those fomm in other Mammals.

At the anterior end of the tympanic cavity, in front of the anterior pedicle of the tympanic bone, there is an opening which comminicates with the pterggoid fossa. This may le regarlerl ins the enlarged immer end of the Eustachian tube. The pterygoid fossa, which measures from 6 to 8 inches in length, about 4 inches in width, and 4 inches in depth, is also a portion of the Enstachian tube, for it is lined by the same mucons membrane as the tympanic cavity and the Eustachian tube proper. The latter is a relatively narrow canal, about three-quarters of an inch in diameter. which opens out of the floor of the pterygoid fossat and winds along a

[^6]groove on the inner side of the parygoid plate of the alisphemoid (text-fig. 71, Pt. ${ }^{1}$, P. 777) to opren into the alveolated nasopharyngeal chamber near the junction of the nares. This tube is about one font in length in the larger specimens. The mucons membrane, which lines the Enstachian tube and is contimued into the pterygoil fossa and tympanic cavity, lise directly on the bony walls of these cavities and covers over the ossicles.

The cavities of the middle car are probably filled with air through the Eustachian tube (text-fig. 72), while the extemal ear appears to he filled with water. The pressure of the water upon the tympanic membane when the whale dives must be comsidemble, and it is
'Text fix. 72.

Wharammatio view of the onter and midalle far of Batrenn pera.
 (0) matlens hy ligament ; $d=$ mallous fused to tympanic bome: $e=$ intus:
 $k=$ Bustachian tube.
cminus that the membane shonla be emense on its inner side insteal of on the outere site. The sac-like membathe, being comnected hy a ligament to the rigid malloms, wamot have a vibating finction. The animal prolally fills the midde ear with air on coming to the surface to breathe. When the ereature dives, this ain is imprisoned hy the chosing of the Enstachian tube. The waths of the latter are phovided with a strong sphincter misele. The air in the Enstachian tube womld be foreed into the pterygoil fossal and tympanic carity when the fobe was compressed, and would inflater the sac-like tympanic memhame. This air would be apmeximately at atmondierie pressme. The incerase of pressure
produced by the water on the external surface of the membrane as the animal divel would tend to compress the walls of the sace. There may be some means by which this increased pressure is made known to the animal, and thus enable the cnriously modifiel tympanic membrane to serve as a pressure-gange ; but it is not possible to assign any function to the structure at present.

The whale probably receives sound-vibrations by means of vibrating bony surfaces, after the manner of fishes. The tympanic bulla is a relatively dense and heavy sounding-box, fastened to the periotic bone by two thin perlicles, so that it could be ensily set in vibration. The bulla is comeated with the fenestra ovalis hy the clain of ossicles, the auditory apparatus being thus independent of the tympanic membrane, which may have some other function, possibly that of a pressure-gauge.

The description of the ear of Balcena mysticelus giren by Home* in 1823 seems to correspond to some extent with the above accomut of that organ in Balrenoptera. The ear of the Odontocetss appears to be more like that of or:linary Mammals t.

V. The Asymmetry of the Odonrocete Skull.

It has long been recognized that a want of symmetry exists in the Odontocete skull, centred round the nasal region; but authorities seem still to be at a loss to accomot for this irregularity, Mr. Beddard \ddagger sums up the difficulty thus:-" It is easier to say that the asymmetry, being, as it is, chiefly developel in the regions of the blow-holes, has something to do with these structures, than to find any adequate reason for connecting the two." From an examination of the skull alone an explanation certainly does not present itself very readily. But when the anatomy of the heal and neck of a symmetrical Mystacocete, such as Balconoptera musculus Limmens, is examined, and the relations of all the parts studied and compared with those of an asymmetrical Odontocete, such as Physeter macroceplulus Linneus, the problem becomes greatly simplified, and a solution seems to offer itself.

In the Cetacea the arytenoid and epiglottiden cartilages form a long, rigid, cylimhical tube, a continuation of the larynx, which rises up through the floor of the pharrox like a pillar and is throst up between the alveolated walls of the nasopharyngeal chamber, which form the roof of the pharynx in this region. In the larger whales this pipe is about one font in length. A somewhat simila pipe-like epiglottis, connecting the larynx with the posterior names also occus in the Marsupials and Ungulates ; but it is less pronouncerl than in the Cetacea.

In the case of the symmetrical Nystacocetes this tuhe is

[^7]situated in the midlle of the pharynx. The food of these whales, consisting as it does of small Crustaceans, can readily enter the companatively narrow pharynx aml find a passage down the pharynx on each sile of the pipe (see text-fig. 73).

Text-fig. 7:

Transverse section (diagrammatie) of the pharyux of a Mystacocete.

$$
a=\text { eniglottis; } b=\text { food-passage. }
$$

In the Oflontocete Physeter the pharynx is fully four or fire times as large as that of a Balanopterce of the same length, and the pipe-like epriglottis, instean of being placed in the midhle of the phargnx, is on the left side close against the left wall of the latter. The pipe passes up into the nasopharyngeal chamber, which has alveolated walls; as in Balconotera, this

Text-fig. 74.

Transerse section (iliagrammatic) of the pharyns of Phascter.

$$
a=\text { eriglottis; } b=\text { foorl-passige. }
$$

chamber commmicates with the posterior nares sithated on the lefteside of the skull. The comparatively lage animats eaten by this whate, which are always swallowed whole, pass down the spacions pharynx only on the right side of the pipe, whith is elose "10 against the left wall and leases plenty of room for their transit. (sire text-fig. 74). Thas the pharenx of I'hyseter in the region of
the glottis is divided into aright half for the passage of food amd a left half for respiration. This amangement gives an asymmetrical form to the masal regions of the skull.

Ponchet and Beanregard*, in their atmirable memoir on the anatomy of the Sperm Whale, refer to the pipe-like epighottis as being asymmetrically placer ; but they state that it was situaterl on the right side of the pharyon, whereas in both the specimens of Physeter seen at Imnishkea the pipe was undoubterlly on the left side. These anthors appear to have attacherl no signilicane to the position of the epiglottis as bearing upon the asymmetry of the skull.

VI. Notes on the Species.

1. Balemoptera musculus Linnreun $\stackrel{+}{\dagger}$.

The length, form, and proportions of all the specimens seen were in accordance with previous descriptions of the species.

Colour. There appenred to be two colom-types in this species, distinguished by the colour of the dorsal surface. In the more common type the colone of the dorsal smface was blnish black; in the other variety the dorsal surface was brownish black, almost sepia. This fact has been noticed by Mr. Haldane \ddagger, who attributes the difference in colour to a light-effect; but it was sufficiently marked in all the individuals landed during my visit for them to be placed in either one or other of the two groups.

The asymmetrical colouring of the face was remarkably constant in all the specimens. On the right side the outer edge of the beak was white or light grey; on the left side the beak was entirely bluish black or sepia in colour, according to the variety which the indivilual belonged to. The anterior third of the baleen plates on the right side were invariably white, the remainder on that side being dark grey or black on the outer halves of the plates and becoming lighter in colour towards their inner edges. On the left side all the baleen plates were similar to the posterior phates of the right side. The bristles were invariahly white all round the mouth, and not black as stated by Mr. Collett $\$$ in his synopsis of the fonr northern species of Balcenoptera. The lower jaw was white on the right side, and bluish black or sepia on the left side. The whole underside of the boily, the right lower jaw, the inner side of the paddles, and the moder side of the flukes of the tail were white in all cases. The roof of the mouth consists of a broad oval margin of white bristles surounding a narrow strip of pink palate, and below, a pink tongue covered with dark grey mottling. Erery specimen had whitish oblong spots distributed over the dark parts of the body, identical, except in

[^8]size, with those firmed and described by Mr:Collett* as oceurning in li. berenlis. 'The spots in li. muscrilus nsually did not execed 50 mm . in length.

Throut-grooces.-In several individuals of looth 13 . musculus and 13. sibbaldii the skin lining the grooves in the thoat-region had a bright red appearance, It unfortmately did not oecmr to me at the time to ascertain the cause of this; but 1 am inclined to think that the red colour of the grooves may be due to their being very highly vascular, and thas helping to aërate the blood. The throat-grooves of Balcenoptera occupy about half of the ventral surface of the bolly, extending fiom the anterior end of the manlible to the navel. In 13. minsculus there are about 100 of these grooves, in the other species about 60 . The skin lining the furows is extremely elastic. When unextended the grooves are about an inch in width; when extembed they are often six inches wide. Thus they would give a large aërating surface. Undoubtelly the principal function of these elastic furrows on the throat is to increase the size of the mouth-cavity, so that a bage volume of water containing Crustaceans can be taken in at each mouthful. The water is stamed off through the whalehone plates, and afterwards the fool is swallowed. In Bulena the mouth itself is very large, owing to the arched form of the skull. so that its capacity is natmally ample. Hence the alsence of throat-grooves in the Right Whales. The function of the grooves ats im ačuating surface or extermal gill, if it oceurs at all, would be a secondary one. This theory, however, wonld emble us to understand the extmondinary powers of remaining under water attributed to Balanoptera which will be referred to later in this paper.

Jacobson's organ.-On the unlersurface of the snont, abont half way between its extreme tip and the small anterior filaments of whalebone, there were two small apertmes leading into namow thbes which ended hlindly about two inches from their mouths (text-fig. 75). These were the ducts of the organ of Jacohson. In li, siblaldii they me only represented by two small depressions. In most Nammals thene orgaths commmate with the nostrils, but in an alult B. musculus they are separated from the nostrils by a distance of some ten feet, and are interesting examples of the persistence of traces of an organ after it has become obsolete. It is just posible that the small ducts in l d. muscelns may have some function, hut they were not equally well developed in all the individuals exmmined, and in one specinen they were reduced to mere depressions very murh like those of B. sili, aldii.

Testes.-In a momber of this species, 51 feet long. the testes were measured und foml to be only 9 inches in length and 3 inches in diameter. In 1 specimen fof foet long the tentes were 2 fect (i) inches in lengthand nearly a font in diameter. Thisshows that male momhers of this species reath matmoty when betwern jo and bill fiet long.

Pemis. - In the Cetacea the penis when not in use is capable of being entirely withdrawn into the borly-cavity. The vental sufface of the borly is thas left free from any protuberance which would hinter the aumal in swimming. The testes remain permanently inside the bolly-cavity. The penis of an ardult B. musculus mbaswes from 5 to 6 feet in length when fully extemled; it is abont a foot in diameter at the base, tapering to a relatively fine point.

Text-fig. 75.

Ventral view of anterior extremity of the beak of Balcnoptera musculus Linnæus $a=$ hairy imer surface of baleen plates; $b=$ external openings of the orgaia
Jacobson.

Food.-An examination was made of the stomach-contents of nearly all the specimens of this species canght during the monthis of July and Angust, and it was found that only one individual, killed on July 13 th, had ferl upon lierings. The alimentary
canals of all the wthers contanam Meymmptiphemes moreypica M. Sats (formerly callad Itgetiphomes moregica). Other sipecies of Euphamaida may have heen present but only the above montioned was definitely determined. In the pharynx these ('rustacoms were found pactically intact; in the stomach they were more broken up, and in the intestines they were reducerl to a thick terat-cotta coloured fluid, the red coloin being due to at reed pigment commonly fombd in the Enphansiinar.

Fietnses. On July 31 st , 1!099, two female 13 . unsculus were killed. one was (is feet long and contained a feetus 1 foot in lengeth. 'The wher was 67 feet long and contained a fuetns $\operatorname{bi}_{2} \frac{1}{2}$ feet in length. This tends to suppre the view that the species mader consideration and possibly other species of Balimoptera have no definite breeding seakon.

I'urasites.-The external surfaces of all the b. musculus: examined were entirely free from pamsites with the exception of the halecn plates. These were rery frequently coated with the alult forms and nanplius lavie of Balenophilus umisetus Amivillius. These remarkable Copepols have been found on the balleen phates of 73 . horealis and B. sibbaldio *, but this appen's to be the finst record of their occurence on B. musculus.

2. Balemortera sibbaldi Gmy (B. latirostris Flower).

The external characters of all the Imishkea specimens were in ancement with the descriptions of the suecies given by previous: ohnervers.

The insile of the month, the laleen. hristles, palate and tongue were entirely back.

The forms of the patdles and dorsal fins of B . sibluctaii differ from those of B. musculus, is is shown ly the diagrams (textfirs. 7 (6,877). It would seem that the presence of a domsal fin is restricted to the fast-swimming Cetaceans.

Thre contents of the alimentary camals were examined in the (alse of some ten imbliviluals of this speries, ranght duming Angust, and fomd to comsist exclusively of Megengetiphares norvegica in all cares.

A young male member of this sprecies, 6.: feet long, was killed while following the mother amd fereling mon her milk. The specimen hand Crustaceans in its stomath, showing that it did not depend antioly upon the mother for food. The young of 13. sibbaldii are silil to to between 20 and 30 feet in length at birth, so, muless the period of lactation is musually prolonged, this would point to a companatively rapid growth and development in the larger Chacea as is mantamed by Mr: Haldane \dagger. If the period of lactation contimmed, as is generally supposed, for whe year the animal would increase in size to the extent of wer 30 feet in its first yesur of life.

The cexternal smetares of all the indiviluals of this species were

[^9]remarkably free from parasites, the only species found being Balrenophilus unisetus Aurivillius on the baleen plates. No internal parasites could be found.

orsal fins of a. Balenoptera museulus Linuæus; b. Balanoptera sibbaldii Gray-
Text-fig. 77.

Paddles of a. Balrenoptera museulus Linnaens; b. Balenoptera sibbaldii Gray.

Two male Sperm Whales were captumen dming my visit. Their general appeamace correspomed whth the descriptions of previous ohservers. But, as there sems to he a little meertainty concerning the shape of the heal of this whals, a sketch is given (textlig. 78) of the form of the heal in the lmishkea specimens.

The upper part of the anmal was hate , the vent tal suface and lower jan a light haish grey. A white oval patch eccurced in the mildle of the wentarl surfer, extembing form a point just in fiome of the mavel to the amos.

$$
\text { Text-fig. } 78 .
$$

View of the left side of the head of Physeler inacrocephalus Limmens.
On the smface of the head of one of the specimens, on the left side immediately orer the position of the nasal bone of the skull, there was a small groove-like depression ahout two inches deep and five inclies long. This slit was placed longitudinally and in a straight line with the how-hole. It may possibly have been a restige of an old hasal opening which was situated further back than the present position of the how-hole.

One of these whales hat 24 teeth on each side of the lower jaw. Six of those on the right and cirfht on the left sile were hroken. No sign of teeth could be found in the upper jaw.

Tl e alimentary canals of the two Surm Whales contamed the remanns of cuttlofish, aml the marks of their homy denticulate suckers could be sed all over the suface of the lower jaw and extending mose than half-way wh the hearl of each whale, from its anterion extromity to the parkles. The marks of the suckers varien from fanmly woted cirenlar imprints, formed by the slight

[^10]innures of the horny teeth of the suckers upon the epirlermis, to deep circular cuts reaching to the blubber. In many cases the epidermis han peeled off from within the decply cut circles, exposing the colium. The circles varied in diameter fiom $\frac{1}{-1}$ inch $o \cdot$ less to $1 \frac{1}{2}$ inches according to the size of the sucker which formed them. These marks were noticed by Pouchet and Beanegard * as ocemring on the head of a Sperm Whale and were attributer by them to parasitic Cimiperles which had become detached. But, after comparing these marks with the horny rings of the suckers taken from the stomachs and intestines of the two specimens, and taking into accomet the fact that the marks only occur on the hearl, there can be no doubt that they were marle by cattlefish during their struggles with the Sperm Whales who had seized them for foorl. The marking of the skin of Olontocetes by cuttlefish has leen referred to by Dr. Harmer \uparrow.

A group of barmacles was found attached to the fourth anterion tooth on the riglit side of the lower jaw of one of these whales. The cluster consisted of individuals of Conchoderma auritum, to one of which was attached a small specimen of C. virgatum. These were the only external parasites to be seen on the two Sperm Whales.

The guts of hoth specimens were infested with internal paras.tes. The determination of these is in progress.

Several of the whales were fresh enough to have permitted an examiuation to be made of their histology and of their gnt Protozoa ; but unfortumately the necessary apparatus for such work was not at hand at Imishkea. This was to he regretted since the gut Protozoa of the Cetacea are quite unknown ant rery little, if anything, has been written upon the histology of whates.

Vit. Misceldaneous Observations.

1. Locality of Captures.

When the station at Imnishkea was first opened in the early simmer of 1908 , whales were takenat a distance of ten miles from the island. But during the season of 1909 the steamers had to go at least sinty miles out to sea before they conll find a whale. It was not possible to obtain the exact latitude and longiture of the captures, as these were kept as trade secrets by the whalers. However, it is safe to say that all the whales obtained by this station during the two seasons of its existence were taken within a radius of seventy miles, north, sonth and west of Jmmishkea. This can be explained either by their being molesterl or by an alteration in the distribution of their food.

During my visit one of the whaling captains discorered about twenty indivirluals of Balconoptere musculus occupying the head

[^11]of an inlet or bay ahout sisty miles north-west of Inmishkea within the 1000 fithom contom: He hanted this spot for three weeks, always finding the whales there, aml was still loing so when I left. I took an oppont mity of visiting the place with him ahout the middle of August and was impressed with the apparent regularity in the halits of the amimals. Between laybreak amd 10 A.m. they were to be seen swimming in this deep inlet and howing every ten minntes. After 10 A.m. they lisispeared for the rest of the day, but were all hack again in the same place the next moming. The captain always appeared on the grome at diaymak, killed one or two and towel then home during the day, returning to the locality over night.

It is maintained by the whalers that the Balenoptera spend several houss near the surface each diy blowing every ten minutes and storing their hlood amd longs with air, and that they then go down and remain below for perhaps eight or twelve homsat a time. They are said to aroil the heat of the day by remaining muler water dming that period amb appearing at the surface in the enly moming and evening. On dull cold days they may be at the surface at any time during the day, though they are most plentiful at smmise. Mr. Collett *apreass to have been given the same account by whalers, The explamation of these habits attributed to the Balmoptera, if they really occur, may be the rising and sinking of the plankton caten ly the Cristaceans which form the staple fool of these whales. It is more likely that the mid-lay heat may have some eflect on the plankton, and this affect the whales indirectly, than that there should be :uny direct influence.

2. Dicing Pomers.

I marle enguiries of the whalers on this subject and I was told that whates, when struek hy the harpoon, often dive to the bettom and sometimes come up with stones allhering to the rentral surface. This, howerer, has been denied by other whaters. During my risit. 1 foumd on the moler sumface of one of the specimens of f3. musculus lamed at Tmishkea in few broken spines of Echinoderms, which had piered the epilemis and were lying between it and the comme. A harponed whate is said to have come to the simface with stomes attached to its moder surface when killed at a locality where the depth was given as 100 fathoms on the chart. If a matmalist, were to speml sufficient time on board a Whaling steamer he could promaly settle this point, for the whales, when deal, always twin over on their backs and float with the rantal sufface uppermost, so there would he no diffieulty in deterting any oulhering stones if they were present. Assming that a harpoonewl whale does not act very differently as regarls diving powns to ome under nomal ronditions, this wouk be a simple metheof of asecertaining what those powers are Of conse

[^12]the objection will be raised that if stones are foumd on the muler surface, how is one to make sure how long they have been there? On this point I was assured by my informant that the stones are genemally so lightly attached that they soon fall off, and a whale conld not thawel fir with them. If we may assume that this is correct, when a whale is captured with stones on the reutral surface it is only necessary to ascertain the depth of the sea at the locality of capture, by referring to the chart, to ascertain the deppth to which the creature has dived on being liarpooned. It is salid by the whalers that when a harpooned whale, after breaking the harpoon-rope, dives to a depth of 60 fathoms and dies, it comes to the surface at the end of three days; whereas if it goes helow this depth and dies it never reappears. There seemed to he unanimous agreement among the whalers upon this point.

3. Copulation, Period of Gestation and Tiate of Breerding.

The Balcenoptera are said by whalers to copulate at the surface of the sea. The pair swim towards each other and turn slightly on their sides so that their ventral surfaces face one another. The male makes several dashes at the female to insert the penis. When the pair first rush together the long axes of their boties are patallel with the surface of the sea; but they curve up rertically at the end of the act. After copulation the male is said to he exhausted and easily caught.

As regards the period of gestation and the rate of breeding among Cetaceans, it is difficult to see how any definite information can be obtained on these and similar sulijects, which are of interest to the cetologist and of considerable importance commercially, moss individuals are kept in a confined place for puposes of observation. This would perhaps not be such an impossible undertaking as it wonld at first appear. Of the many deep sounds or stmits, through which the tides pass, on the western coasts of Ireland and Scotland, one could doubtless be found which could be converted into an aquarium for whales. To do this it would only be necessary to place harriers at the mouths of the strait in order to imprison the animal and yet allow of the ingress and egress of the tide and food-supply. The animals would have to be caught by the Japanese method of capturing whales, which consists of throwing a large rope-net orer the animal and towing it to the shore alive. Ralama biscayensis Gmy, has been taken hy this method and possibly other species also *.

A Whalebone Whale imprisoned in a strait could prohably be kept alive on the organisms swept in by each tile.

Until some such scheme as this is bought to pass we must continue to remain in ignolance, or be content with vague speculations, concerning many points in the biology of the larger Cetacea.

[^13]

Fik. 1. Pisterior viow of the right tompmic menhrane of Ralrenoptere musculus himusus, showing its attachment to the malloms.
a. Head of malleus with the two articular surfaces for the inens.
b. Mamuhrimn of mallens.
c. Drocepsus longus of matleus.
d. P'ortion of the lip of the tympane bone to which the processus longes of the malleus is fined.
c. ligament of tympanic membrane.
f : Sac-like tympanic membrame.
4. Portion of the muents membrane lining the tympanic cavity.
h. Wall of external anditory canal which has been cut near its junction with the rim of the tympanic membrame sac.
 Limhens. A. Dorsal view of phar. 13. Posterior view.
a. Cup-like portion for the reception of the tympanic membrame.
b. Flattened distal portion.

Fig. 3. Ventral view of the left tympanic bone and imer portion of the extermat atulitory meatus of Bulcenoptera museulus Limmens.
a. fomer portion of extermal anditory meatus with the veutral wall removed to show the tympanic membrame and phor.
b. l'lug of ear-was.
c. Twmpanic membrane.
d. Tympanic bone.
‥ Zoological Reults of the Third T:mganyika Expertitom, combucted by Dr. W. A. ('mmington, F.Z.ぶ., 19(04-1905.-Report on the Rotifera. By (imables Fr. Rouss:Let, F.R.M.s.*
¿Received April 7, 1910.]
(Plate 1ANSV. \dagger)
Amongst the collections brought hack hy 1r. W. A. Cumangton from the great inland lakes of Central Africa, visited Juring this Experlition, were a number of tubes containing fine surface Phankton nettings which I have searehed over for Rotifera.

The gatherings were not specially male with a view to collect these creatmes, and being, moreorer, made only from a boat in the open water and never among the veretation near the shore, these eirembstances may accomat for the comparatively poor results olitained.

The Collection is, howerer, interesting and important from the firct that, with the exception of 8 species (excluding dombtful ones) collecterl in and near the Victoria Nyanza biv. Stuhhmam in $18: 11$ and deseribeì by 1r: Ant. Collin (1) Ën 1896 , and 14 admbiomal speries (agim excluding the donbtful ones) eollected in tha Vietoria Ny:mzal by In: Borgert in 1904, and dencribed hy Prof. E. vim linlay (2) in 1907, no previons recomls of Rotifera

[^14]
[^0]: * Commanicated by Dr. Hans Gadow, F.R.S., F.Z.s.
 + For explanation of the Plate see p. 792.
 ${ }^{+}$For an admirable short acconnt of the history of whaling and of it.s recent establisbment in Scotland, see two papers by the late Thomas sonthwell : Amals of Scottish Nat. Hist. 1904, vol. xiii. p. 77; and Amals \& Magazine of Nat. Hist. ser. 7, vol. wi. 1905. See also Lillie, Proc. Cambridge Phil. sore, vol. w. pt. iv. p. 317.

[^1]:

[^2]: * A second Irishs sation is experted to be opened for the season 1910.
 + Knox, Proc. Roy. Soe Edinh. i. 18:33-1. Eschricht \& Reinhardt, "On Nom-

[^3]:

[^4]:

[^5]: ＊Carte \＆Mambister，Phil．Trams，12i\％，pl．vi．fig． 11.

[^6]: * Carte \& Macalister, 7or. rit. p. 254.
 + Dwioht, Mem. Boston Soc. Nat. Hist. 1872, vol. ii. p. $22(6$.
 \ddagger Carte \& Macalister, loc. cit. p. 254 ; $\mathrm{D}_{\text {wight, }}$ Inc. cit. p. ©26.

[^7]: * ILome, 'Lectures on Comparative Anatomy' (1823), Vol. iii. Lect. IX., Vol. ir. Tathe. e. \& ci.
 † Hunter, Phil. Trams. 1is7, p. 130.
 \ddagger Bedtard, A Bood of Whaler, 1. 19.
 Proc. Zuol. Suc: -1910, No. LI.

[^8]: * Pouchet et Beamecrard, Nouvelles Archives du Musónm (P'tris), 3 sér. vol. iv 1892, p. 59. pl. iii.
 + Kuown also as B. physalus Fabricins, F. roryual Latépède, Physulus antiquomm (f ny.
 \pm Haldane, Amals of Sottioh Niat. Hist. 190 s, p. 70.

[^9]:

[^10]:

[^11]: * Ponchet et Beanregard, Nouvelles Archives dn Muscum (Paris), 3 sér. vol. i. 1889, р. 4 .
 \dagger Harmer, 'Tans, Norfolk and Norwich Naturalists' Soe. vol. vii. 1901, p. 185.

[^12]: * Collett. Itwe \%owl. Sur. 1\&86. 1. 2en3.

[^13]: * K. Möbins, Sitzung-berichte der Akademie der Wissensehaften An Berlin, lii. 1893.

[^14]:
 \dagger For explanation of the I'late see p. 7919.

